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Equivalence of Two Formalisms for Calculating Higher Order
Synchrotron Sideband Spin Resonances*

S.R. Mane
Fermi National Accelerator Laboratory, Batavia, Illincis 60510

May 11, 1988

Synchrotron sideband resonances of a first order spin resonance are generally regarded
as the most important higher order spin resonances in a high-energy storage ring. Yokova's
formula for these resonances s rederived. including some extra terms, which he neglected,
but which turn out to be of comparable magnitude to the terms retained. Including these
terms. Yokoya’'s formalism and the SMILE algorithm are shown to be equivalent to leading
order in the resonance strengths. The theoretical calculations are shown to agree with certain
measurements from SPEAR.

1 INTRODUCTION

Synchrotron sideband resonances of a first order spin resonance are generally regarded as
the most important higher order spin resonances in a high-energy storage ring. The problem
has previously been treated by Yokoya.[lj More recently, a formalism for arbitrary higher
order spin resonances has been deve]oped,m which includes synchrotron sideband resonances

as a subset. Although both formalisms use perturbation theory, the terms are summed in
different ways, and the results look quite different.

However, we shall show below that the two formalisms are equivalent, subject to certain
caveats which will be described below. In particular, we shall rederive Yokoya's formula.
We find that there are some extra terms, which he neglected, but which turn out to be of
comparable magnitude to the terms retained. These terms are already present in the SMILE
formalism. We also fit the results to some data from polarization measurements at SPEAR,IS]
and obtain reasonable agreement for some resonances.

*To be presented at the 8'* International Symposium on High Energy Spin Physics, University of Minnesotn, Sept 12 - 17,
1988,



The polarization is calculated using the Derbenev-Kondratenko formula**

eq — = N
5vV3 7, 2. .., 11. 084
(o156 *ﬁ;*@b

Here 7 is the particle velocity, b = ¥ x g/ x T, p is the local radius of curvature of the
particle trajectory, n is the spin guantization axis on the particle trajectory, and the angular
brackets denote an equilibrium average over the distribution of particle orbits and the ring
azimuth. The direction of the equilibrium polarization vector is ﬁeq i (n!. Both Refs. 1]
and 2. calculate n perturbatively, in ways to be described below, to evaluate F,,. ‘

2 YOKOYA’S FORMALISM

2.1 SOLUTION FOR n

The notation and formalism below will mainly follow Ref. ;1. The ring azimuth is denoted
by . The horizontal betatron coordinate and energy offset of the particle are

75 = \v.f"'Ql,,,Bm cos{v, — V. (4))

£ = \VfZZIZ cost; . (2)
where {J;,v;,j = r.:} are action-angle variables. and V,(#) is the periodic part of the
betatron phase advance.

- f Rd¢’
v (0) = - Q.8 . 3
( ) o 31-(0‘) 4 : ( )

where R is the average ring radius. The horizontal betatron and synchrotron tunes are called
Q. and Q,. respectively. in this note. The equation of motion for the Derbenev-Kondratenko
Tl axls 1s i
Fr —
— ={Qy—c)xn. 4
d6 ( 0 b ) ( )

Here O, is the spin precession vector on the closed orbit and & is the contribution of the
orbital oscillations (& = 0 on the closed orbit). We write & = g, — €7, to denote the

couplings to the horizontal betatron and synchrotron oscillations, respectively. We express
7 in the form

AT ve. oot 8) = gy /1 — (%~ Re(kg() . (5)



where iy and &, are both solutions of Eq. (4) on the closed orbit. and
ng(f ~ 27) = 7o)

ko(8 —2%) = €P™ky(8) . (6)

Here v is the spin tune. The equation of motion for { is
d¢ e .
& _ —tdkoy/l = (2 —wdned (7)
dé

We approximate /1 — ( ? >~ 1 and then solve for (. which yields

8 o
(= —if""{”)/"x do' x5 ko (d') (8)

where .
X = —f Fiodd' (9)
[0}

The contributions of rapidly oscillating terms in y are neglected. and only synchrotron
oscillations are retained, i.e. w.ng > €, np. In this context. we approximate @, << 1. We
also define v, = ~a/Q,. Then

y = \E]—z u sin v, . {10}
Using the relation
E” sin — Z Eimujm(?":l , (11)
we obtain Yokova's result
ac —_— o - ‘ —
(= Y [Rane) - X\ 2ne Vg ()] e (o) . (12)
where
— e 1MW.8 -2 o~
An(8) = / MGk S Ky b
( ) Ez??r[u-—mQ,) —1Js € 0

_ (i‘ !’2)6:{‘_52"'Q:e]”ilea

‘ b-2r —i( T, Q8 )~im3,8 [ < T g
Bm’:z(g) = (IE_JET(!’:Q:‘an) — 1).\/:3—:_/9 € Vﬁr";.'r'kﬂ dﬂ . (13)

2.2 RESONANCE HARMONICS

The term in A4,, describes synchrotron sideband resonances centered on an integer. whereas
the termsin B, -, describe svnchrotron sideband resonances around the betatron resonances



v+ n= @ = 0, respectively. We shall focus on satellites of a betatron resonance, say

v+n-— Q= 0,s0 we neglect A, and B, .. We also keep only the harmonic closest to the
resonance in B, _,. ie.

B B 1 b,z e~ iFasilvsn')s
s s om T _521}*””_@:*‘“”’1@3 \/B:
1 b E—i-\]v'-;+i(p+n)9
~ 2 : 14
2v+n—-Q;+mQ, V3 (14)

2.3 SOLUTION FOR ~(87/9)

Next, we want 3¢/8¢. to get

£

7(97/0%) in Eq. {(1}. Note that'"

= Mz = 1(77;:13: -+ Tf:ra:r)

d mu ‘ i(m—1)y i{m~ 1)y -
E{Jm(\/ﬂzue)e‘m‘”} - %[Jm_,(«/ﬂzu()e( Ut s (V2L )09 (1)
hence
aC -1 - 0 ] -i(",+$,] / My
‘a—f = € Xmiz_:x Bm(a)[a(\mhﬁﬂ v )Jm(v szu()é ¥

w1/2133:e'i(w‘+$’)?+(Jm(\,"iue)eim“")] : (16)

Je

Yokoya neglected the second term, but we shall retain it. After Eq. (3.6) in Ref. 1, it

1s stated that “we have neglected the terms which are proportional to betatron oscillation
amplitudes after differentiation.” Using Eq. (13).

B = 0 3 Bl8)](-n - it - mean)dnly2hn e
+Vf’2115154w,—61)%(Jm_l(\,-’é}:u()g(m-l)u,
- m—l(ﬁzuf)f"md)m)]
= e i Cm(a)Jm(v-’éIu()e"mwn (17)



2.4 ENSEMBLE AVERAGES

Averaging over the synchrotron oscillations, assuming a Gaussian distribution.

ac? o , [ dI -
20N = Cn(8)? [T ST e U2 (oL,
< BE > m;mw ( ) o (Iz> € m(V u)
= Y C.(8)%e inla). (18)
where a = {I,)u! = (I.)(va/Q,)*. We also need to average over the betatron orbits in C,,.
From Eq. (17)
Crm(8) = (=1 = (0.3 = meea)) By = 2 Boe™ %02 B — By (19)

For brevity. put § = v —n — Q.. We shall consider the terms proportional /21,3, later, but
neglect them for now. Then

Cm(ﬁ) : = (ni - (T];ﬁ: * Th:fla:)z) Bm!2

2 _ it 2 2
- 177: (7?:31 Mz0z) b 1 (20)
4 3: (5—7710_,)2

and so

On *\ _1n;~ (8s ~nee.) & bFein(a)
<'ﬁ— > ! 8, 2 (6 - mQ,)? ° (21)

which agrees with the expression for / 4(8n 'd+) ! in Eq. (3.18) in Ref. 1.

m—= -

2.5 ADDITIONAL SPIN INTEGRALS

Now let us include the extra terms, which are proportional to \V2I.3: in Eq. (19). To do
so. note that™

3y

C.~2!

i Po 8
€ = (I)= 2027 77
< * Jc{ Po —2.‘8
Comre 1 72— (9.3: - n.a,)? Cove H
€25 = (L) = —L < T2 = {80 - e0) > SR < 3> . (22)
J:r\:P[] T Po 3.1' é J:z\;pO‘_ /8 Po. P
where {...)s denotes an average around the ring circumference. C, = 55/(324/3)R/(mc) =

3.84 x 1071* m, py is the bending radius of the closed orbit. 4 is the average electron energy



in units of mc?. and J, and J, are the partition numbers of the synchrotron and betatron
damping constants. For brevity. define K = Cy72/{\pg/"*)s. Then, averaging over both the
orbital action-angle variables and the ring circumference.

(] 8712) _ <1?‘9<i2>
PE’ ‘} a‘) 8,0rbits - Pi3 1 g€ | f.orbits
112

= Z e“’Im(o)[K_lJ,E,,g;ﬁz%Bm 2 ezBK“lJ(e(—;

(8 Bns® + 68 By = 2Re(8,B 1 BrLy)) | - (29)

We neglect the cross term Re(3. Bn_y By, _,) because it is not as singular as the other terms,
and so

1 aﬁ:z €z - -a % z
(5375 ) = X lestsnhe
a . % -2
+J(?2';/3,.-_ Boi (Im—l(a)*fm.fl(a))}
wt S Y dala) = 42 Ums(a) ~ Tms(a))]. (21)
K o 4(E - mQ ) 7T e m=n i)

One of the features of the above result is that because I_,,{a) = I.(a}, the terms in m and
—m have the same strength. This can be verified by substituting m — —m in Eq. (24).
Thus Eq. (24) predicts the polarization should be symmetric about the first-order “parent”
resonance. The inclusion of less singular terms. which have been neglected in the above
derivation, will change this symmetry.

2.6 ENHANCEMENT FACTORS

2.6.1 Sidebands with m > 0

Let us now consider only the terms for which m > 0 in the above sum. These are the
sidebands v = n - Q. — Q,. v = n - Q. — 2Q,. etc. We shall return to the m < 0 terms
later. Using the relation

a(fm-1(a) — I_1(a)) = 2mli, (a) . (25)

Eq. {24) can be written in the form




B © g-o] ( B2 J, Imy(a)
= JeI@Z : )(E_MmQ‘JE[l-FJ—r(m—a—ﬂ»—Im(&? )} (26)

We can write the above result as an “enhancement” of the parent resonance

1| af‘z-2> < 1 6n|2>
Loy g . 27
<!p.373'r 262 851 /1o order (27)
The first-order result is
11 1, H, b?
<w— YA > = ‘<*§> TR (28)
§P\31 a"f\ 14 prder 4 JP b
Hence. for the m > 0 sidebands,
i J, Inai(a) } = 62
== - -Zi{m + (o) ———— . 29
Using the asvmplotic relations
: aym 1 .
Infe) = (5)" = (a<m),
o (30)
~ e (a > m),
T Vora '
we see that the term in al,,_,/],, 1s important only if a » m.
2.6.2 Sidebands with m < 0
For the sideband resonances with m < 0 in Eq. (24), the enhancement factor is
0 J I a(a)\] 82
= - | = - ik — onm Ny
Frso = 2 1= Fome T 1O
o~ Jr ]m-—lia) } - 62
= - - "I {a}—m—— . 31
P S O R e B

The two enhancement factors are equal. as expected because the two sets of rescnances have
equal strength (see the statements below Eq. {24))

2.6.3 Combined results

We can combine the above results into one factor

x J. Im—lfa) . 52
F= ¥ -3 (m +a—-_1m:(;) )}e Il (32)
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A similar, but slightly different, theoretical formula has been reported in Ref. 6", but without
derivation. and only for the m > 0 sidebands. It is also convenient {o write

= uz
S Tomoy (33)

F

[l

If the resonances are well separated, then it can be shown that the width of the resonance
&+ m@, = 0 is proportional to W,,. In particular, the ratio of the width of the sideband
resonance {—md), = 0 to that of the parent resonance é = { is equal, not merely proportional,
to W, /1. This result is not true, however, if several terms in the above sum contribute
significantly to the width of a given resonance, i.e. if the resonances overlap.

2.7 NUMERICAL ESTIMATES FOR o

At this point, let us estimate the value of a = ¢ (ya/Q,)? for various rings. We obtain the
value of ¢, using Eq. {22). For SPEAR at the horizontal betatron resonance v = 3 + @,
E =365 Ge\'. and po ~ 12 m, and we put J, = 2. From the data in Refl. 3|, Q, ~ 0.045.
For HERA. we use the values £ = 30 GeV, p = 600 m, J, = 2 and @, = 0.06, and for LEP
we assume L = 50 GeV', p = 3000 m, J, =2 and @, = 0.1. The values of ¢, and a for these
three models are given in Table 1. We see that @ < 1 for SPEAR. but is approximately
unity for HERA and LEP.

Table 1: Numerical estimates for {/,} and a

. Ring o el= ) a
SPEAR | 82x107 2.8 x 1072

‘ HERA 1.1 x 1078 1.42

| LEP 6.1 x 1077 0.79




3 SMILE FORMALISM

3.1 SOLUTION FOR n

In this section the SMILE formalism™ will be used to derive the above results. We need
only consider sidebands with m > 0. In Ref. {2, the orbital motion is written as a sum of
eigenvectors but here we shall write & = 234, — €5, instead. and now we put

T3 = Gy3T5 — C.C. , £ = Q.E~+ €.C.. (34)
where
Azs = \';HJI: e!:(l,'«‘g’oze) a, = V"Iz €i(¢=VQ'9}
3. - 1@ .6 (35)
Ty =\ = elQefrdel € =
V2 V2
We decompose )
n :nllo—n?rhg*n;;ﬁo (36)

in terms of a right-handed orthonormal basis {fo,ﬁlg,ﬁg} of solutions of the Thomas-BMT
equation on the closed orbit. and we define

mn; — i‘ﬂ_g n, - T-TIQ

"1:*' V§ I._]:——“‘\/E—. IE):TIQ,. (37)
Then kg = _fo — ithg and { = —+/217. The solution for n is given by a time-ordered
exponentia]'2‘
T 0
4 -
Vo | = Tlexp (:f de'-.s.ﬂ) 1 (38)
1,4 0

where J is a vector of spin 1 angular momentum matrices. To obtain a practical solution,
we expand the above exponential in a power series and sum the terms order by order.

3.2 SYNCHROTRON SIDEBAND RESONANCES

The above exponential contains all combinations of spin integrals. but to get the previous
solution for { (Egs. (6) - {9)). we consider only the terms with r%;.ky at first order, followed
by powers of ed,.70, the coupling to the synchrotron oscillations, 1.e.

— 8 =
C= VY = —?'/ a9’ £.3, kg



5 % _
n f A6 ez, ho | 4" 2, Ry
-

-~
8 g g -
~ f 48 €, o f " Govo | 8" 2B, dog — ... (39)
Eq. {38} also contains terms of the form
i 18 Y oL e ~
¢ = 5/ 48" €5, g ds”ewf.kgf 48" 2iip oy — . .. (40)

i.e. terms involving & .k, rather than &, Ao, as well as other terms. Let us now evaluate Eq.
(39) term by term. As before, we approximate

e Q0¥ /g 3 Ky~ beilrTn @l = peitl (41)
and. from above. we approximate ele.g >~ —Q,u.v/21. cos ¥, because Q, < 1. Let us now
write { = (3 = {2 — {3 ~ ..., where (,, is the n'" term in Eq. (39). Then

6 -
R I Y
b Eié&
= —alg——— . 42
We also need the results, which can be derived from Eq. (13),
da’ o B — TNz — 1 ’Bm T Hxllp
o E ﬁ_(a;se—l(q’r—Qre)) — T’ (T’ B . T] a ]
e e 23,
da,
- 1 4

Je (43)

3.3 FIRST ORDER

To first order,

(9C] aa' b i_zw— . i .
o " e (44)
and
i on/f }i8G ¢t
(o5 ) = ma)
B 1 da' 2\ b?
= (55 o
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- YA

el
in agreement with the previous calculation.
34 SECOND ORDER
At second order.
b S 58"
= —ay 5l ——i Rge™? df’ .. 46

CL’ 5\@5 \/- Y ( )
We have neglected the term which gives the resonance § — @, = 0, because we are only
considenng sidebands § + m@, with v > 0. Using the approximation for &,.7g given above,

C? ~ —a” L . ¢ _O sUe 1{5+Q 8 d&l

a ]
z8 ‘\//55 s \/‘
b Q’u( Ei('s"an

= a —, . 47
SOV TRARNG Sy ) (+7)
Then 8¢, 1,84 Ban b O
s 1gva s sUe  i(.~QB) i(6+Q,)8
5~ alac 5 )3 -0 ‘ (48)
and

<1 8g7> N 2<1 6a’2>
p3 O B p 30 [ 48°

1 3&'2 ‘da, * 52 (Q,m)z
NN

Be | be 1/ 16214~ Q,)
b2 6 (Q.u)
= K7le, ——2}{‘1 e(J = J h—m———_" . 19

Recall the expression for the enhancement factor F in the previous section could be written

in the form
axx H 2

F= Zm. (50)

m=-x

Unlike Eq. (30), the sum in Eq. (49} cannot be separated into terms with distinct reso-
nance denominators é — m({,. The higher order terms also contain lower order resonance
denominators. Thus the second term has both é* and (6§ — @,)? in the derominator. This
gives a correction to the first order resonance strength of Oeu?) = O(a}. In the previous
calculation. this was given by the e™2I,(a) and ol _; I, factors.

11



Let us concentrate on the leading order contributions {in powers of the beam emittances)
to the resonances. i.e. the leading power of a in W,,. From Table 1, this is a good approx-
imation for SPEAR. It is not such a good approximation at higher energies. To obtain the
strength of the first sideband resonance, i.e. W17, we can approximate é +~ ¢, >~ 0 near the
resonance. Hence we can put § ~ @, = 0 in the coefficient of (6 - @,)~? in the r.h.s of Eq.
(49)

. Jey eculé? Joy af? .

HEZNI*IJ ; =(1fz)3—. (51)

Recall that in squaring and averaging v(0n/8~) in Eq. (24), the interference terms between

distinct resonances were neglected. This was permissible as long as we considered only the

most singular terms in each resonance. We shall also neglect interferences between resonances
here. From Eq. (29).

- Je I ca 2
11 :[I‘Z“*“aﬁbk Ii(a)6
J, a’\la .
= [-g0-5)5
- (-5 (52)

and so the two formalisms agree.

3.5 GENERAL CASE

Let us now consider the m'" sideband & — m@,. Tt can easily be verified that

b a:n(_qu()m

- i(6-mQ, 8 53
(mez = axsv’ié 2 E - Q). .. (6~ mQ,)E i (33)
and so
R T ?> < 1 [ da' 2, . fag ., 2}>
— ~ (22 g o gan, tm T
<p35 de p3l de “ e Mg e
b'.’ (Q,u()l’m
x_
B E Q. (B mO, ¢
b2 Je
= K—lfrs-]:‘_i"gg {m!f:‘ —m?(m - l)le:’lz}

y ((?s,ur)Qm
(6= G, . (6 = mQ.)?
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V my2m
L . mla™Q
= K legsdy |1 +m— :

A e R

b [ Je

Putting 6 + m@Q, = 0 in the coeflicient of (§ - mQ,)2,

mla™Q™

Vo = mevor eomononl

I

I
- m};)

— m!amo-f (1 ) e)
T om(m— 1) (m - 27,120 g

mfa"‘éz( N Js)

T oV T
- (1-mI T8 (55)
Once again, using Eq. (29) vields the same result
W o= [1 - %(m - a]}:(lic)l))}e—ufm(a)éz
= { B j_:(m_ Q(m(.li 1)”231!62
~ (1- mj—m) ;:rf‘ (56)

4 NUMERICAL RESULTS

4.1 SIDEBANDS WITH m > 0

4.1.1 Enhancement formula

Fig. 1 shows a graph of polarization vs. energy measured at SPEAR.™ In this section we
shall compare the above results with some data from this graph. specifically, the horizontal
betatron resonance v = 3 —~ @, at 3.65 Ge\’ and iis sideband v = 3 ~ Q, — Q,. The
resonance widths are obtained from Fig. 2 (which is a subset of Fig. 1 containing the relevant
resonances) by measuring the interval in which P/ P, < 50%. where P, = 8,./(5\/'5) ~ 92.4%.
We find that the widths are approximately 4.1 - 6.4 Me\" for the resonance v = 3 — @, and
1.5 MeV for the sideband v = 3 + @, ~ Q,. The values of the relevant parameters used in

13



Table 2. Resocnance widths

A. Resonance widths in MeV

v=3+Q, ‘ 41 - 6.4

v=3-0Q.- 0, | 1.5

B. Values for Wy /W7 in Fig. 2.

Expt. 2.7-4.3 .

Theory (Eq. (29)) 1 4.9 |
| .

Theory {Eq. (21)) i 8.5

the theoretical fit (Eq. (29)) are the same as the ones used to calculate a in Table 1. so
v=ya= 828 Q, = 0045, a = 28 x 1072, J, = 2 and J. = 1. The results are given in
Table 2. The result obtained by using onlv Eq. (21) is also given. The second sideband
resonance v = 3 ~ ), — 2Q, could not be fitted by this method because it is so narrow that
P/ Fy does not drop below 50% in the experimental graph.

4.1.2 SMILE program

A simplified version of the SMILE program. called SMILE?. which calculates only the leading
order contributions to the spin resonances (in powers of the emittances. as defined in the
previous section). was used to fit the above resonances in the data. Using SMILE2. it is
possible to fit both the v = 3 - Q, - Q, and v = 3 — 0. — 2Q, sidebands. The result is
shown in Fig. 3, and it also agrees with the data. A model storage ring with the approximate
properties of SPEAR was used to fit the width of the first order betatron resonance. The
widths of the sideband resonances then followed without further adjustment of the model.

In this context, one should note that both SMILE and SMILE? require some imperfections
in the storage ring model in order to yield any resonances — they give absolute resonance
widths. from which the ratios of the widths of distinct resonances can be calculated. The
enhancement formula Eq. (29) gives the ratios of resonance widths, but not their absolute
values. These are obtained by multiplying the ratio W, 11} by the strength of the first order
resonance. and this again requires a model of lattice imperfections.

14
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Figure 1: Polarization measurements at SPEAR (from Ref. [37)
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4.2 SIDEBANDS WITH m < 0

Eq. (32} predicts that the sidebands with m < 0 should have the same widths as their
counterparts with m > 0. This point is not mentioned in Ref. ‘6. and a formula is not
presented for the m < 0 sidebands. There is not enough experimental data to test this
prediction quantitatively, and in addition there are other complications. both experimental
and theoretical.

First, 1t is reported in Ref. 3 that the polarization measurements were not all made in
the same run. and the machine parameters. such as the tunes and the closed orbit, varied
between runs. Thus the resonance widths cannoti all be obtained from one model. Second,
the data around the region of the sideband resonance v = 3 —~ Q, — @, is sparse, and
so the resonance width is difficult to estimate accuratelv. Even the width of the first order
resonance v = 3~ is difficult to estimate accurately. With regard to the second sidebands
v =3~ 0, =20, the resonance v = 2, — 2 is close to the resonance v = 3 -~ Q, -~ 20,
at 3.685 Ge\V'. so there are reallv 1wo resonances there. and the resonance v = 2Q, — 2
is not treated in the above calculation. Further. many terms have been neglected in the
above calculations such as the r.h.s. of Eq. (40). and they are not always svmmetric about
the parent resonance. A few such integrals will be calculated below. to demonstrate the
asvmmetry of their effect on the resonances ¢ = m@Q, = 0.

The version of the SMILE pragram used above. called SMILE?2. is a simplified version
which calculates only the leading order terms considered above for each resonance. and
also neglects interferences between resonances. It also predicts that the sidebands should
be svmmetric about the first order resonance. The full SMILE program. called SMILEI,
includes non-leading terms as well. but requires much more time and storage space for its
computations. An example of such non-leading terms is given in the appendix below. In
addition. the inclusion of non-leading integrals introduces more adjustable parameters into
the calculation. Hence a better numerical representation of SPEAR is required. Work on
the above matters 15 in progress.

5 CONCLUSIONS

It has been shown that Yokova's formula - for synchrotron sidebands of a first order be-
tatron spin resonance together with some terms he neglected (Eq. (29)). and the SMILE
spin integrals™ (Egs. (43), (52) and (56]). are equivalent. There are numerous caveats to
the previous statement: in particular it was assumed that @, <« 1. and only the leading
contribution (in powers of the beam emittances] 1o each resonance was retained. The latter
approximation is not very good for HERA and LEP. and so one expects that higher order

18



terms are required in the power series in Ref. {2’, and the terms in /1 — (j* in Eq. (5) are

required in the formalism of Ref. '1I. Both SMILE2 and Ref. [1! also neglect interferences
between resonances.

One cen also show that the iwo formalisms yield the seme result for synchrotron spin
resonances centered on an integer. The proof requires the same approximations made for
the case of sidebands of a betatron spin resonance, and involves similar calculations, hence
it will not be shown explicitly here.

The formula Eq. (29) was used to fit certain data from SPEAR polarization measure-
ments, specifically the ratio of the widths of the resonances v = 3+ Q, and v =34+ Q. - Q,.
It was also shown that the SMILE2 program could fit the above resonances. including in
addition the v = 3 + @, — 20, resonance. However, the above theoretical formulas also
predict equal width for the resonances v = n + @, = mQ@,, but the experimental data do not
necessarily support this conclusion. The full SMILEL program can haundle this case in prin-
ciple (i.e. a more comprehensive range of spin integrals, and including interference terms
between integrals). but a more detziled knowledge of SPEAR is required, in particular a
more detailed model of the lattice, and a more sophisticated model of lattice imperfections.
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A ADDITIONAL SPIN INTEGRALS

Here we shall calculate some additional spin integrals which were neglected in the main text.
The goal there was to prove the equivalence of the formalisms in Refs. 1] and [2,. The
approximations in the main text (the neglect of various spin integrals) led to the prediction
that the resonances § = m@Q, = 0 should have equal width. Here we shall show that some of
the terms which were neglected above can cause the resonances 6 —m@, = 0O and 6—m@, = 0
to have unequal width. The terms considered in the example chosen below come from the

/1 —i(.? factor in Eq. (3).

Let us calculate the contribution of a term such as the r.h.s. of Eq. (40). It contributes
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to (3. We shall call the previous solution {5” and the new term C3(2). Then

{2 t ' el —‘[ ’ wo e [0 -
& 5/ df' elokol [ d8" e ks [ "2l ko
. 'L . . . arr " - __-I

- dé mw,_.kﬂf_ de E-u(-kSJ

—ac

;48 # 8
t - 1 - 3 - 7 -
= —f dé’ eu(.ko( dé’ c.g'c.k(])( dﬂ"';cm:.kg) . (57)
We have included another integral because it is very similar, and the sum of the two integrals
15 actually easier to calculate than the lndw]duai terms. T\ote that we now need expressions

not only for &,. ko and &,.ng, but also &,. ko and &, . k We approximate
deko~a et Sk~ a_e 0 (58)

where ¢ = v — n’ and n' is the most singular harmonic in the zbove functions. Then.
making the previous approximations for the other functions, and keeping only terms which
contribute to the resonance é ~ 20, =

SR . b
A2 ! (HQu-6)8 a_ Q-8 gite’
*3 2 ,/5 (\/rQ-(Q' — &) ) (\/Eé )
1 G_ﬂ_b ;‘(6+2Q.]9 (-9)
- - ]
2 2% HE-20Q,08 - Q)

We have omitted constants of proportionality which are exactly the same as in C:gl]. The

above solution must be added to Cé” coherently. i.e. before differentiating and squaring to
obtain ~(8n,/8+) % The result is

(1] (2 b 6206 0 w)? 1 a_a. :
G- — e ] (60)
V20206 -200)L 8- Q, 28 - Q,
The contribution 10« p 7*'+(37/8~) *’ therefore changes to
< 18 2> < 1 8c§”-2>1 la.a £-0,7 (61)
p? Oe p? Be (Qeu)? & — J ' '
The contribution to the resonance § - 2Q, = 0, on the other hand. is
b el-2@08 iy} 1 ga. )
- e ; (52

* V2620620 5-0, 26-0,1

v

The proportionality factor is the same as before. In the main text. the strengths 11'_,, of
the resonances £ = mQ, = 0 were unchanged by the transformation Q, — —0Q, (only the
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resonance denominators changed). and so the resonance widths were equal. Here, the terms
In e_a_ have opposite signs in Eqgs. (60) and (62), and so the resonances & = 2Q, = 0 no
longer have equal width.

We therefore see that the additional terms in the solution for { can cause the resonances
6 =m@, = 0 to have unequal width. The example chosen invelved the 1~ i{i* term in
Eq. (5). and applied only to the resonance § = 2@,, but the conclusion obviously holds

more generally. Unfortunately, it is also necessary to introduce additional lattice dependent
parameters such as ¢. and a_.
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